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1. INTRODUCTION 

Tissue Mimicking Materials (TMM) play an essential role in 
performance evaluation, safety, and calibration of ultrasonic 
diagnostic and therapy equipment, as well as in studies of 
biological effects caused by ultrasound [1]. These materials are 
used to simulate ultrasonic properties of soft tissue, such as 
velocity, attenuation coefficient, backscattering coefficient, and 
nonlinearity parameter [2]. Several materials mimic soft tissues, 
such as those based on agarose, gelatine, phytagel, and Zerdine 
[2], among others. Soft tissues comprise muscles, tendons, 
ligaments, fascia, fat, fibrous tissue, synovial membranes, nerves, 
and blood vessels [4], [5] 

The international standards IEC 60602-3-5 [6] and IEC 
60601-2-37 [7] describe specific requirements and tests for the 
safety and performance of ultrasonic physiotherapy equipment 
and ultrasonic diagnostic equipment, respectively. Both 
standards recommend the use of TMMs that mimic the thermal 
and acoustic properties of human soft tissues. The 

recommended ultrasonic speed for the TMM is 1,540 m s-1, 
estimated at a single frequency of 3 MHz [6], [7]. 

Agar-based TMMs are commonly used in ultrasonic 
applications and are typically composed of 11.21 % glycerine, 
82.95 % deionized water, 0.47 % benzalkonium chloride, 0.53 % 
silicon carbide, 0.88 % aluminium oxide (0.3 µm), 0.94 % 
aluminium oxide (3 µm), and 3.08 % agar [7], [8]. According to 
[4], when stored properly, these materials remain stable for up to 
two and a half years. However, when used routinely in the 
laboratory without the adequate care, their durability decreases 
to less than a month due to bacteria proliferation or structural 
damage. Therefore, TMMs made from these or similar materials 
are unsuitable for long-term use and frequent moves.  

Considering this, there is a need to produce TMMs that are 
suitable for commercialization. Some commercially available 
TMMs included Zerdine, a hydrogel-based material (CIRS Inc., 
Norfolk, CT, USA), a condensed milk-based gel (Gammex RMI, 
Middleton, WI, USA), and a urethane rubber-based simulator 
(ATS Labs, St. Paul, MN, USA). Browne et al. [9] conducted a 
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study on the acoustic properties of these materials, such as 
velocity and attenuation coefficient, over a frequency range of 
2.25 to 15 MHz and at different ambient temperatures, from 10 
to 35 °C. The study found that the agar-based material showed a 
linear increase in attenuation, indicating its sensitivity to 
frequency and temperature variation. 

In response to these challenges, oil-based materials have 
emerged as promising candidates for more robust and durable 
TMMs. Kondo et al. [10] evaluated a TMM formulation based 
on ethylene glycol and reported that oils offer intrinsic 
advantages, such as resistance to bacterial growth and high 
chemical stability, minimizing evaporation over time. Subsequent 
studies, such as that by Cabrelli et al. [11], validated the use of 
SEBS copolymers dispersed in mineral oil, showing controllable 
acoustic properties and compatibility with soft tissue 
characteristics, including speed of sound between 1423 m s-1 and 
1502 m s-1. Recent reviews support these findings; Pavan et al. 
[12] and Jawli et al. [13] identified a growing trend in the use of 
polymeric and oil-based materials – such as SEBS, paraffin gel, 
and PVA due to their thermal stability, acoustic compatibility, 
and suitability for medium- and long-term applications. 

In this context, the present study seeks to characterize the 
speed of sound of oil-based materials, such as mineral oil, 
lubricating oil, and ethylene glycol, with the objective of assessing 
their feasibility for use in the fabrication of tissue-mimicking 
materials that combine long-term stability, ease of transport, and 
acoustic fidelity suitable for the evaluation and calibration of 
ultrasonic diagnostic systems. 

2. MATERIALS AND METHODS 

2.1. Modelling speed of sound: Mathematical approach for the 
selected materials 

The speed of sound of the liquid (𝑣l) is determined by 
equation (1): 

𝑣l =
2 ∙ 𝑑

𝑡m

 , (1) 

where 𝑡𝑚 is the time of flight (ToF) in the material, and 𝑑 is the 
distance between the transducer surface and the reflecting target. 
Figure 1 shows the measurement scheme. 

The distance 𝑑 is previously determined by equation (2) using 
the same measurement scheme, with deionized water as the 
reference medium. 

𝑑 = 𝑣w ∙
𝑡w

2
 , (2) 

where 𝑡w is the ToF in water and 𝑣w is the US propagation 
velocity in the water. Equation (3) reveals the speed of sound 
(SoS) as a function of the water temperature (T) [14]: 

𝑣𝑤 = 1405.03 + 4.624 ∙ 𝑇 − 3.83 ∙ 10−2 ∙ 𝑇2 . (3) 

The maximum deviation of Equation (3) from experimental 
data, reported by [14] as ± 0.18 m s-1, was considered in this study 
as a type B standard uncertainty component associated with the 
propagation model. This value was included in the combined 
uncertainty budget for the calculation of the speed of sound in 
the test materials, following the principles of uncertainty 
propagation outlined in the GUM.  

2.2. Samples used 

Samples of ethylene glycol (Probil, Nova Iguaçu, Brazil), 
mineral oil (Isofar, Duque de Caxias, Brazil), and lubricating oil 
(Lubrax, Rio de Janeiro, Brazil) were used, as illustrated in 
Figure 2. Each substance was stored in an individual glass beaker 
with an approximate capacity of 600 mL. No additional 
purification steps were performed prior to their experimental 
use. 

2.3. Measurement procedure 

The pulse-echo measurement technique [15] was used. The 
measurement system consists of a thermal bath model 557 
(Fisatom, Brazil) filled with deionized water at room 
temperature, a glass container with the sample, a 5 MHz centre 
frequency transducer (Olympus - USA, model V309), an 
oscilloscope (Keysight - USA, model DSOX 1202A), a type K 
thermocouple and temperature measurement system (Agilent 
Technologies - USA, model 34970A), a signal generator (Agilent 
Technologies - USA, model 33250A), and data acquisition 
software developed in LabView™ (National Instruments, 
Austin, TX, USA) (Figure 3). 

2.4. Measurement uncertainty 

Measurement uncertainty is defined as a non-negative 
parameter that is associated with the result of a measurement that 
characterizes the dispersion of values that can reasonably be 
attributed to a measurand. In this study, the combined standard 

 

Figure 1. Experimental setup (adapted from [17]). 

 

Figure 2. Samples used: A) Ethylene glycol, B) mineral oil, and C) lubricating 
oil. 

 

Figure 3. Characterization of the speed of sound of the analysed materials. A: 
thermal-controlled water bath; B: sample; C: transducer; D: oscilloscope; E: 
temperature measurement system; F: signal generator; G: software 
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uncertainty was evaluated in accordance with the principles 
established in the Guide to the Expression of Uncertainty in 
Measurement (GUM) [16]. A total of ten repetitions were 
performed for each of the three sets of measurements, including 
time of flight and temperature. The statistical treatment was 
based on the mean values obtained from these repeated 
measurements, and the associated standard deviations were used 
to quantify the variability of each quantity. 

The uncertainty evaluation considered both Type A and Type 
B components. Type A uncertainties were determined through 
statistical analysis of repeated measurements of time of flight, 
temperature, and speed of sound. Type B uncertainties, on the 
other hand, were estimated from information external to the 
measurement series, including: the measurement uncertainty of 
the oscilloscope for measuring the time of flight in liquid 
(0.024 %), the expanded uncertainty reported in the calibration 
certificate of the temperature (U = 0.09 °C, p = 0.95, k = 2), the 
uncertainty in the distance measurement between the transducer 

surface and the reflecting target surface (2.7396 ∙ 10-5 m), and the 
uncertainty related to the mathematical model used to estimate 
speed of sound in water as a function of temperature (0.18 m s-1). 
The contribution of each source of uncertainty is illustrated using 
an Ishikawa’s diagram, shown in Figure 4. 

3. RESULTS 

3.1. Speed of Sound (SoS) 

The measurement results of the speed of sound in materials, 
with their respective uncertainties, are shown in Table 1 and 
Figure 5. 

4. DISCUSSIONS  

The development of stable and reliable Tissue Mimicking 
Materials (TMMs) is critical for the accurate evaluation of 
ultrasound diagnostic equipment. Agar-based TMMs, although 
widely used, suffer from limited durability, prompting the 
exploration of alternative materials with superior stability. This 

study investigated oil-based materials, including mineral oil, 
lubricating oil, and ethylene glycol, to assess their potential as 
long-lasting TMMs.  

Ethylene glycol exhibited the highest SoS, followed by 
lubricating oil, while mineral oil presented the lowest value. 
These differences reflect intrinsic variations in the acoustic 
properties of each fluid, which may be associated with their 
molecular composition and physical structure. Notably, mineral 
and lubricating oils showed SoS values within the typical range 
for soft tissues, supporting their potential as base components in 
tissue-mimicking formulations. 

The temperature of each fluid was recorded at the time of 
measurement using a calibrated thermometer. Although all 
experiments were performed under controlled laboratory 
conditions, slight temperature variations (within approximately 
2 °C) were observed among the samples. These variations are 
attributed to the different thermal properties and stabilization 
times of each material. Despite these small differences, they were 
considered metrologically acceptable and were incorporated into 
the uncertainty analysis of the speed of sound measurements, 
ensuring the reliability of the results. 

The low combined and expanded uncertainties across all 
materials support the consistency and reproducibility of the 
measurement method used. This level of precision is crucial 
when selecting TMMs for standardization or reference purposes. 
The relatively narrow uncertainty ranges suggest that the 
materials tested can provide stable acoustic performance over 
time and under controlled conditions. 

These findings suggest that both mineral and lubricating oils 
are suitable candidates for developing stable TMMs, as their SoS 
values fall within the typical range required for mimicking soft 
tissue. Furthermore, their moderate uncertainties indicate 
consistent performance across measurements, reinforcing their 
potential as reliable alternatives to traditional agar-based 
phantoms. Ethylene glycol, while having the highest SoS, may 
offer different applications, such as in specialized phantoms 
where higher acoustic velocities are necessary. 

5. CONCLUSIONS 

Based on the results, mineral oil and lubricating oil emerged 
as the most suitable candidates for developing TMMs due to 
their stable ultrasonic properties and low uncertainty values. The 
measurement process followed the principles of the Guide to the 

 

Figure 4. Ishikawa’s diagram: contributors to uncertainty in ultrasound group 
velocity measurements. 

Table 1. Ultrasonic velocity results for each material with their respective 
expanded uncertainties (p = 0.95). 

Material 

Temperature 
in  
 

°C 

SoS  
in 
 

m ∙ s−1 

Combined 
Uncertainty 

in 
m ∙ s−1 

Coverage 
factor 𝑘 

Expanded 
uncertainty  

in 
m ∙ s−1 

Ethylene 
glycol 

21.1 1,727.0 2.35 1.96 4.6 

Mineral oil 22.5 1,397.1 2.89 1.96 5.7 

Lubricating 
oil 

23.0 1,471.8 2.39 1.96 4.7 

 

Figure 5. Ultrasonic velocity results for each material with their respective 
expanded uncertainties (p = 0.95). 
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Expression of Uncertainty in Measurement (GUM), ensuring 
traceability and methodological rigor. Their acoustic behaviour 
aligns well with the requirements for mimicking soft tissue, 
making them viable options for phantoms designed for the 
transport and evaluation of ultrasound diagnostic equipment. 

Although ethylene glycol exhibited the highest SoS among the 
materials tested, its properties may be more appropriate for 
applications where higher acoustic velocities are necessary. 
Therefore, further studies could explore its potential in 
specialized phantom designs. Overall, the oil-based materials 
demonstrated superior durability and stability compared to 
traditional agar-based TMMs, reinforcing their suitability for 
long-term use in ultrasound applications. 
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