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1. INTRODUCTION 

Research, development, and innovation (RDI) in the 
metrology 4.0 area are necessary to support digital 
transformation and technological advancements in many areas, 
such as industry 4.0 and the medical 4.0 environment. In the area 
of ionizing radiation, in particular, some projects have been 
developed, mainly to “promote the infrastructure for legal 
metrology to support conformity assessment processes and 
market surveillance” [1]. Studies of personal dosimetry, dose 
prediction in radiotherapy, and clinical imaging, using innovative 
technologies such as Artificial Intelligence (AI) and Deep 
Learning, are being carried out with promising results [2]. 

In Brazil, some challenges make the metrological digital 
transformation process even harder, mainly related to the 
modernization of measurement systems and the integrating of 
professionals from multidisciplinary areas working in RDI. 
Another identified challenge is the risk associated with the 
difficulty in public individuals and end users accessing 
metrological information, such as calibration results and 
radiation qualities applied to field tests in interventional and 
diagnostic radiology. Efforts need to be directed towards 
mitigating these gaps and the new risks arising from such 
transformation [3]–[5]. 

A cyber-physical system (CPS) can be established within a 
calibration laboratory, enabling the simulation of its instruments 
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and processes. The simulations can function in parallel as digital 
twins, contributing to a better projection of the physical system. 
This supports transformation efforts, as the CPS is continually 
improved through the ongoing measurement system 
modernization and integration into the digital environment. 

1.1. Cyber-physical systems 

CPS are “integrations of computation with physical process”. 
They integrate elements controlled and monitored by embedded 
computers and networks generating and receiving data with 
feedback loops of influence variables [6]. This system 
consolidates computational, communication, and storage 
resources to reliably, securely, and efficiently monitor and 
control entities in the physical environment in real time [7]. 

Three fundamental aspects are considered essential in CPS 
[7]: 

• Real space: the physical elements of a system; 

• Object domain: sensors, actuators, or devices connected 
in a network with those components; 

• Cybernetic/virtual space: the computational part that 
receives the data of the physical sensing, makes the 
control, and promotes the action in the domain of the 
objects. 

In this scenario, the reliability of data obtained from the CPS 
becomes critical and must be continually assessed. Validation 
tests are suitable tools to do it. 

1.2. Simulation and digital twins 

Simulation has, as its primary conception, the act of 
manipulating concepts and exploring reality. It is considered the 
third alternative of scientific study, besides theory and 
experimentation. It can be understood as the technique of using 
models to study a particular system [8]. 

Digital twin technology (DT) involves creating an accurate 
digital replica of any environment. According to the Centre for 
Digital Built Britain, DT is “a realistic digital representation of 
assets, processes or systems in the built or natural environment”. 
It must represent physical reality at a level of accuracy suited to 
its purpose, considering the quality of the data on which the twin 
is based, the fidelity of the algorithms, the validity of the 
assumptions, and the competence of the code to represent it 
digitally, besides the quality of presentation of the output [9]. 

Simulations and digital twins utilize digital models to replicate 
a system’s processes. The difference between the two is related 
to scale: a simulation typically studies one process, while a digital 
twin can run any number of useful simulations to study multiple 
processes [10]. Another difference worth highlighting is that 
simulations usually do not benefit from having real-time data. 
However, digital twins are designed around a two-way flow of 
information. This feedback system generates insights from data 
analysis, which are then shared with the physical counterpart. In 
other words, digital twins have more significant autonomous 
potential in the processes [10]. 

Figure 1 illustrates the hierarchy relation among these items 
in a calibration laboratory of ionizing radiation meters. The CPS 
is the laboratory's macrostructure, which shelters some DTs 
inside it. Computer simulations are responsible for feeding the 
DTs with virtual data, while physical sensors do this with data 
from the physical environment. 

1.3. Objective 

This study aims to create a pilot CPS from a calibration 
laboratory (LabPROSAUD/IFBA) and prospect how its 

simulated instruments, meters, and processes can work as digital 
twins, contributing to continuously improving its physical 
processes. 

2. MATERIALS AND METHODS 

2.1. Characterizing virtual apparatus for ISO N Radiation Quality 

The first step for the air kerma measurement simulation is 
establishing a virtual apparatus, similar to the physical one, 
guided by ISO 4037 series requirements [11]–[13]. 

The Monte Carlo code used in the simulation was EGSnrc, 
with the egs_phd application [14]. 

The spectral requirements for ISO N 60 radiation quality are 
mean energy between 45.6 keV and 50.4 keV (5 % of tolerance 
relating to the 48 keV mean energy), and resolution between 30.6 
and 41.4 % (15 % of tolerance relating to the 36 % of resolution). 
Those features shall come from a tungsten anode, aluminium (4 
mm, counting Al equivalent inherent filtration) and copper (0.6 
mm) of additional filtration, and distance measurement of 1.0 m–
3.0 m [11], [12]. 

Those requirements have already been established in a 
previous work published by Macedo. The results have shown 
mean energy of 47.2 keV and spectral resolution of 33 % for the 
corrected spectra obtained in both physical and virtual 
laboratories. They comply with standard requirements and could 
be considered capable of performing virtual measurements under 
ISO N 60 radiation quality conditions [15]–[18]. 

2.2. Setup for the physical air kerma measurement 

The apparatus for air kerma measurement under ISO N 60 
quality is the same as the one used for spectrometry, except for 
the radiation detector and its distance from the x-ray source [12]. 

The standard ISO 4037 recommends the setup illustrated in 
Figure 2 [11]–[13]. 

According to Figure 2 number positions, the instrumentation 
used was: 

• Position 1: ISOVOLT Titan E 160M2, an X-ray tube 
with a tungsten anode and inherent filtration of 1 mm Be; 

• Position 2: lead primary collimator; 

• Position 3: PTW shutter; 

• Position 4: aluminium and copper additional filtration; 

• Position 5: pre- and post-monitor chamber collimators; 

• Position 6: transmission chamber as a beam monitor 
(PTW TM-786);  

• Position 7: reference chamber, a PTW 1-liter spherical 
ion chamber (TM32002), calibrated in terms of ambient 

equivalent dose, 𝐻∗(10), at PTB. A PTW Unidos 

 

Figure 1. Digital elements hierarchy pyramid.  
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webline electrometer measures the charge or current 
generated from the ion chamber. 

The experimental setup established on Labprosaud/IFBA is 
shown in Figure 3. 

The 𝐻∗(10) reference value was obtained with the reference 
chamber positioned 2.5 m far from the source, with a 4 mA of 
tube current. The field geometry at this point is a 30 cm diameter 
circle, with an air kerma inhomogeneity lower than 5 % to 24 cm 
diameter.  

For the open air ion chamber, a correction factor for air 

density, 𝑘TP, is calculated from a measured temperature (𝑇, in 

°C) and air pressure (𝑃, in kPa), which must be applied according 
to equation 1 [12], [19]: 

𝑘TP =
(273,15 + 𝑇)

293,15
∙

101,325

𝑃
 . (1) 

The reference air kerma, 𝐾𝑎,N60
ref , for ISO N 60 radiation 

quality is obtained from equation (2) [13]: 

𝐾𝑎,N60
ref =

𝑁𝐻,60
ref

ℎ𝑁
∗ (10; 𝑁60)

 ∙ 𝑀60
ref ∙ 𝑘TP , (2) 

where: 

- 𝑁𝐻,60
ref  is the reference system calibration coefficient, in terms of 

𝐻∗(10); 

- 𝑀60
ref is the uncorrected measure of the reference system; 

- ℎ𝑁
∗ (10; 𝑁60) is the conversion coefficient from air kerma to 

ambient dose equivalent for ISO N 60 radiation quality. 

2.3. Setup for the virtual air kerma measurement 

The scenario used for the virtual measurement of the ISO N 
60 spectrum was also applied for the production of the beam 
used for kerma measurement, which can be seen in Figure 4. 
Structures from 1 to 5 are fixed in this cyber-physical laboratory, 
and the radiation detector changes according to the desired 
application [15]. 

Elements shown in Figure 4 include: 1. X-ray focus; 2. 
primary collimator; 3. aluminium and copper filtration; 

4. monitor chamber collimators; 5. monitor chamber; 6., 7., and 
8. spectrometer. 

The active volume of reference PTW 1-liter spherical ion 
chamber (TM32002) was designed according to its technical 
specification for the virtual air kerma measurement. There were 
two concentrical spheres of polyoxymethylene and a 1000 cm³ 
air volume between them. Figure 5 shows the technical design 
[20]. 

The Monte Carlo code used in the simulation was EGSnrc, 
with the egs_kerma application [21]. Figure 6 shows the 
simulation of the lab apparatus (point 1), same as Figure 5, and 
the measuring volume (point 2). 

The highlights of the simulation code are: 

• Source definition with egs_collimated_source; 

• Air region inside the chamber selected as “scoring 
regions” element;  

• “Scoring region masses = 1.20479”, in grams, calculated 
from an air density of 1.20479·10-3 g/cm³, for an active 
volume of 1000 cm³; 

• Forced detection (“FD geometry”) option used to 
optimize interactions on ion chamber; 

• Mass-energy absorption coefficients from 
“emuen_rho_air_1keV-1.5MeV.data” [21]. 

 

Figure 2. ISO 4037 recommended setup.  

 

Figure 3. Physical air kerma measurement setup on Labprosaud/IFBA [18]. 

 

Figure 4. The simulated scenario of N60 spectrometry on EGSnrc [14].  

 

Figure 5. 1-liter chamber technical design [20]. 

 

Figure 6. 1-liter chamber simulated.  
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Collision kerma for medium m, 𝐾m, is computed by summing 

up the individual contributions of 𝑁 photons crossing the 

scoring volume 𝑉m using equation (3) [21]: 

𝐾m = ∑ 𝜔𝑖

𝑁

𝑖=1

.
𝑙𝑖

𝑉m

. 𝐸𝑖 . (
𝜇en

𝜌
)

m,𝑖

 , (3) 

with 𝑙𝑖 the path crossed by the 𝑖th photon of statistical weight 𝜔𝑖 
through the scoring region. 

2.4. Digital twin for air kerma measurement 

The pilot DT system of air kerma measurement will be 
designed from the Monte Carlo simulation described in 2.3. It 
consists of a two-way flow of information that first occurs when 
sensors provide relevant data to the system processor (“Physical 
Sensing”), and then happens again when insights created by the 
processor are shared back with the source object (“Information 
Actuation”). This workflow is illustrated in Figure 7.  

The variables obtained on the physical system that will feed 
the virtual one are listed below: 

• Air kerma: air kerma measurements from reference 
ionization chamber; 

• Ambient temperature: used to correct the air density 
inside the chamber; 

• Atmospheric pressure: used to correct the air density 
inside the chamber; 

• Humidity: used as a control variable inside the X-rays 
room, values within a specific interval; 

• Radiation quality: beam characterization, quantified from 
spectrometry variables, such as mean energy; 

• Distance source-to-detector; 

• Field area at the reference irradiation point; 

• Tube voltage; 

• Tube current. 
The database produced from those variables will allow the 

analysis of relationships between two or more quantities. Some 
correction factors are examples of the expected output of DT 
data analysis. Reproducibility and correlations among variables 
can also be considered.  

3. RESULTS AND DISCUSSION  

As a preliminary result, kerma simulation in the virtual 
laboratory was obtained. The virtual PTW 1-liter ion chamber 
measures 4.3 × 10-13 Gy/mAs.  

The variables obtained on physical simulation, and replicated 
in the virtual system, were: 

• Air kerma: 2.3 × 10-7 Gy/mAs; 

• Ambient temperature: 21.0 °C; 

• Atmospheric pressure: 101.05 kPa; 

• Humidity: 56.6 %; 

• Radiation quality: mean energy of 47.2 keV and spectral 
resolution of 33 %; 

• Distance source-to-detector: 2.5 m; 

• Field area at the reference irradiation point: 24 cm 
diameter; 

• Tube voltage: 60 kV; 

• Tube current: 4.0 mA. 
A discrepancy in air kerma measurements was observed 

between the physical and digital twin systems. The ISO N 60 
setup of the virtual laboratory was established [15], however, 
kerma measurements did not have the same performance. 

Since the physics of electromagnetism is not included in the 
EGSnrc Monte Carlo code, it is not possible to simulate an 
exposure based on mAs values that would produce the expected 
number of electrons and, consequently, X-ray photons in a real 
exposure. This limitation exists in this study and in other studies 
using Monte Carlo computational simulations. To address this 
issue, the authors estimate correction coefficients to adjust the 
simulated values relative to experimental values, or use air kerma 
data estimated from the generated X-ray spectra. This 
information was discussed by Macedo (2023) [22], based on 
previous studies by other authors [23]–[28]. 

The workflow described in Figure 7 is the expected result of 
pursuing the development of a cyber-physical calibration 
laboratory and a digital twin of the components of air kerma 
measurements. 

A pilot project of a digital twin calibration laboratory was 
proposed by Macedo using the presented CPS in an application 
of interlaboratory comparison [22]. 

4. CONCLUSION 

Building cyber-physical systems and implanting digital twin 
concepts in their processes is challenging. Developing those 
technologies in a radiation laboratory environment also has its 
obstacles. The virtual air kerma measurement system was chosen 
for its level of recognition, since it is widely disseminated in 
calibration laboratories around the world. 

The results show that this work’s objective was partially 
reached, since the difference between virtual and physical air 
kerma measurements form the field of investigation as next 
steps. The good agreement between physical and virtual 
spectrometry in the last work indicates that the virtual air kerma 
can be obtained with better accuracy. 

The designed workflow has the conceptual basis for 
transforming the Monte Carlo simulations into a digital twin 
system, including the loop feedback of data in its operation. 
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