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Abstract. This work presents an application of the Boundary Element Method in physical 

problems associated with orthotropic materials. The coordinate transformation resource was 

applied to use the isotropic model corresponding to the orthotropic model, this enabled a direct 

application of the Boundary Element Method to find a numerical solution. Solutions obtained 

with the application of the Finite Element Method were used for comparison. The error was 

measured through the percentage relative error, having as reference the analytical solution of the 

analyzed problem, being approached by the Separation of Variables Method. 
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1.  Introduction 

The material properties cannot be assumed isotropic in many engineering applications. The most 

common examples occur in non-crystalline substances, such as sedimentary rocks and wood, or in 

materials obtained through the manufacturing process by lamination or deep drawing [1]. Concerning 

the oil extraction in rocks, many mathematical models use hydraulic diffusivity models based on Darcy’s 

Equation to a simulation of the fluid flow [2]. In these problems, a rheological approach in which the 

constitutive properties are based on the scalar field theory can be used to achieve an effective numerical 

solution.  

Currently, the increasing level of engineering applications has demanded materials with 

multipurpose characteristics. The best example concerns composite structures, which are made from 

two or more constituent materials that, when combined, produce a material with improved physical or 

chemical properties. In many important practical cases, the aim is to achieve a suitable balance between 

resistance and thermal conductivity. Functionally graded materials [3] comprise another class of 

material, characterized by the gradual variation in composition, resulting in corresponding changes in 

the properties of the material. Procedures based on, layer processing and melt processing are used to 

fabricate the functionally graded materials. In this case, the mechanical behavior of the material is 

anisotropic, beyond non-homogeneous. Some references have investigating heat conduction analysis in 

functionally graded materials [4]. However, despite the non-homogeneity in functional materials, 



 

available mathematical strategies can separate the non-homogeneity and 

anisotropy, if desired. The most serious problem, in this case, concerns the 

impossibility of a suitable mathematical treatment that transforms the anisotropic behavior as 

orthotropic, using a changing in the coordinate system, in applications as seismic prospection. For this, 

although more complex, many modern usual approaches are general, in which both constitutive 

phenomena are examined together. These general approaches require mathematical tools for solving 

domain integrals, which usually employ radial basis functions [5, 6].  

Concerning just orthotropic homogeneous scalar diffusion problems, the Boundary Element Method 

presents many interesting formulations, such as the use of Dual Reciprocity [7], the use of anisotropic 

fundamental Green’s function [8], the natural boundary integral equation [9], and the simple procedure 

in which the governing equation of anisotropic potential problem is transformed into standard Laplace 

isotropic equation by the coordinate transformation method [10]. Despite being more restrictive, this 

last technique uses the isotropic fundamental solution, which preserves important Boundary Element 

Method (BEM) features, particularly related to high accuracy, beyond simple data entry, and 

approaching non-regular regions in applications to reservoir modeling. Using this approach, it is also 

possible to use auxiliary numerical tools as the radial basis function to approximate terms related to 

other physical phenomena, such as impedance or inertia, for example, with higher accuracy, without the 

use of the time-dependent Green’s function. 

Indicating that there is a demand for more robust discrete models, in recent years there has been a 

resurgence of recent specialized literature analyzing orthotropic problems, e.g., using the method of 

fundamental solutions [11], meshless techniques [12]and alternative BEM techniques [13]. Thus, in this 

article, a review of the classic BEM procedure using the standard Laplace fundamental solution is 

performed, aiming for future more elaborate applications. Two basic problems that have known 

analytical solutions are solved, ratifying the accuracy and simplicity of this formulation, which allows 

a more robust development of the BEM model in other classes of anisotropic scalar field problems, 

especially the transient process in a non-homogeneous medium. 

2.  Scalar potentials in anisotropic media 

It is known from continuous scientific experience that the flux 𝐯 of some physical quantities such as 

thermal energy, electrical energy, and the fluid flow through granular or porous regions [14] obey 

mathematically the following expression: 

 
𝐯 =  −𝐊𝛁𝑢 01 
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In equations (1) and (2), u is representing a scalar potential and Matrix 𝐊 corresponds to a diactic or 

second-order tensor, representing the constitutive properties of the medium. For the homogeneous case, 

the formation of 𝐊 depends on the crystalline constitution of the material and, in addition, the physical 

properties of the single crystals of some substances depend on the crystallographic direction in which 

the measurements are taken, directions which are here called X′ = 𝑋′(𝑥′, 𝑦′, 𝑧′). Properties such as 

elastic modulus, electrical conductivity, and refractive index can have different values in the [100], [110] 

and [111] directions (vide Fig.(1-a)). According to literature [15], the directionality of the properties 

(anisotropy) is associated with the difference in atomic or ionic spacing as a function of the 

crystallographic direction. The magnitude of the anisotropy effects in crystalline materials are functions 

of the symmetry of the crystalline structure and the degree of anisotropy increases as a function of the 

reduction of structural symmetry, the triclinic structures developed in Fig. (1-b) show marked 

anisotropy. 



 

 

3.   Diagonalization of the anisotropic model 

The diagonalization of the dyadic or 𝐊 tensor is possible if it is admitted that it is symmetric. We seek 

to find a strategic orientation for the coordinate axes, and for a symmetric model diagonalization will 

always be possible, with only 6 different components existing, considering the components of the 

diagonal 𝑘𝑥𝑥, 𝑘𝑦𝑦, 𝑘𝑧𝑧 and the others where: 

 
𝑘𝑥𝑦 = 𝑘𝑦𝑥; 𝑘𝑥𝑧 = 𝑘𝑧𝑥; 𝑘𝑦𝑧 = 𝑘𝑧𝑦 03 

 

The symmetry also implies that the eigenvalues of dyadic 𝐊 are real and given by a well-known 

determinant procedure, which avoids the trivial solution: 

 
𝑑𝑒𝑡|𝐊 − 𝜆𝐈| = 0 04 

 

Assuming that the eigenvalues are distinct it is possible to determine the three eigenvectors which 

corresponds to the main coordinates axes, where the dyadic 𝐊̅ has a diagonal representation, i.e.:  

 

𝐊̅  =  [

𝑘̅11 0 0

0 𝑘̅22 0

0 0 𝑘̅33

] 05 

4.  Governing equation 

The presentation of the governing equation is done considering a 2D domain with homogeneous 

properties. Considering the steady state and sourceless physical assumptions, the application of the 

continuity equation or another equivalent equation leads the proposed problem to the expression 
𝛻𝑘
2𝑢(𝑋) = 0, where: 

 

𝑘̅11
𝜕2𝑢(𝑋)

𝜕𝑥1
2 + 𝑘̅22

𝜕2𝑢(𝑋)

𝜕𝑥2
2 = 0 06 

 

Figure 02 presents the two-dimensional domain 𝛺(𝑋) arranged in the Cartesian coordinate system 

indicated by 𝑥1 and 𝑥2, delimited by the boundary conditions 𝛤𝑢 and 𝛤𝑞, representing the boundary 

conditions. 
 

Figure 1: (a) Unit cell showing your possible preferred directions. Extracted from the book Materials Science 

and Engineering: An Introduction. (b) Model of an anisotropic structure containing: Orthorhombic, Monoclinic 

and Triclinic. Extracted from the https://pt.slideshare.net/guilhermecuzzuol9/estrutura-cristalina-37503063 



 

 

5.  BEM application 

5.1.  The fundamental solution in orthotropic problems  

The fundamental problem related to Eq. (06) involves the presence of a source concentrated at a point 

𝜉 in the two-dimensional domain Ω(𝑋), after changing the coordinate system considering  

𝑧𝑖 = 𝑥𝑖 √𝑘̅𝑖𝑖⁄  , the fundamental problem was rewritten according to Laplace's equation, where: 

 

𝑘̅11
𝜕2𝑢∗(𝑋)

𝜕𝑥1
2 + 𝑘̅22

𝜕2𝑢∗(𝑋)

𝜕𝑥2
2 = −∆(𝜉; 𝑥1)∆(𝜉; 𝑥2); 

 
𝜕2𝑢∗(𝑍)

𝜕𝑧1
2 +

𝜕2𝑢∗(𝑍)

𝜕𝑧2
2 = −∆(𝜉; 𝑧1√𝑘̅11)∆(𝜉; 𝑧2√𝑘̅22) 
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Using the fundamental problem in 𝑧1 and  𝑧2 coordinates, we obtain the fundamental solution, and 

its derivative as follows: 

 

u∗(𝜉; 𝑍) =  
1

2𝜋 (√𝑘̅11𝑘̅22) 𝑙𝑛[(𝑧1
2 + 𝑧2

2)1/2] 

; 

 𝑞∗(𝜉; 𝑍) =  −
𝑧1𝑛𝑧1 + 𝑧2𝑛𝑧2

2𝜋 (√𝑘̅11𝑘̅22) (𝑧1
2 + 𝑧2

2)
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5.2.  Transformation of the government equation using the coordinate system 𝑍 = 𝑍(𝑧1, 𝑧2) 
To make the problem compatible with the fundamental solution proposed in 5.1, it is necessary to adapt 

the government equation (vide Eq. 06) to its related problem in 𝑧1 and 𝑧2 coordinates. Fig. (03) 

represents this adaptation: 
 

Considering the coordinate transformation function 𝑧𝑖 = 𝑥𝑖 √𝑘̅𝑖𝑖⁄ , its partial derivative is 𝜕𝑧𝑖 𝜕𝑥𝑖⁄ =

1 √𝑘̅𝑖𝑖⁄  . This transformation is developed into Eq. 9, where we arrive at : 

 

𝛻2𝑢(𝑍) = 0; 
𝜕2𝑢(𝑍)

𝜕𝑧1
2 +

𝜕2𝑢(𝑍)

𝜕𝑧2
2 = 0; 

𝜕𝑢(𝑍)

𝜕𝑧𝑖
= √𝑘̅𝑖𝑖

𝜕𝑢(𝑋)

𝜕𝑥𝑖
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Figure 2: Generic physical model of an orthotropic problem. 



 

 

 

5.3.  BEM application in the domain 𝛺(𝑍) 
As presented in topic 5.1 of this section, the fundamental problem proposed by Eq. (07), together with 

its fundamental solution Eq. (08) and transformation showed in Eq. (09) can be associated with the 

inverse integral form over the isotropic domain 𝛺(𝑍) [10] as follows: 

 

1

√𝑘̅11𝑘̅22

𝑐(𝜉)𝑢(𝜉) + ∫ 𝑢(𝑍)
𝛤(𝑍)

𝑞∗(𝜉; 𝑍)𝑑𝛤(𝑍) − ∫ 𝑞(𝑍)
𝛤(𝑍)

𝑢∗(𝜉; 𝑍)𝑑𝛤(𝑍) = 0 
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Since the values of 𝑐(𝜉) correspond to: 
 

𝑐(𝜉) =  {

𝛼

2𝜋
, 𝑖𝑛 𝑡ℎ𝑒 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦

1, 𝑖𝑛 𝑡ℎ𝑒 𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝑝𝑜𝑖𝑛𝑡
 11 

 

and 𝛼 represents the geometric corner angle. 

 

After applying the discretization process on the 𝛺(𝑍) domain, using Eq. (10), the matrix system is 

obtained as follows: 

 

[
𝐻11 ⋯ 𝐻1𝑛
⋮ ⋱ ⋮
𝐻𝑛1 ⋯ 𝐻𝑛𝑛

] (

𝑢1
⋮
𝑢𝑛
) = [

𝐺11 ⋯ 𝐺1𝑛
⋮ ⋱ ⋮
𝐺𝑛1 ⋯ 𝐺𝑛𝑛

] (

𝑞1
⋮
𝑞𝑛
) 12 

 

As the matrix system of Eq. (12) allows solving the government equation for the coordinates 𝑍 =
𝑍(𝑧1, 𝑧2), the values of 𝑢(𝑍) and 𝑞(𝑍) obtained must be transferred to the system of original coordinates. 

The values of 𝑢(𝑍) are equal to 𝑢(𝑋) and to obtain the values of the derivative 𝑞(𝑋), the transformation 

according to Eq. (09) must be applied, returning to the Cartesian system, in addition to also repositioning 

its values to the corresponding ordered pairs. 

6.  Simulation 

Normally, orthotropic problems have a much higher level of numerical difficulty than isotropic ones. 

This is the case of the example chosen here for numerical simulation. Despite the apparent simplicity of 

the geometrical configuration and boundary conditions, the number of boundary elements needed to 

solve it with a high degree of accuracy is meaningfully greater than in an equivalent isotropic case. 

This can be confirmed by the number of terms required by the series that characterizes the analytical 

solution available for this example, whose expression is presented later on. 

Figure 3: (a) Real problem in the Cartesian domain and (b) Equivalent problem in the 

coordinate system 𝑍 = 𝑍(𝑧1, 𝑧2) 



 

Concerning the discretization process, 84 internal points were used for all 

meshes, which were subdivided into 40, 80, 160, 320 and 640 boundary 

elements. The percent error was analyzed (vide Eq. 13), where “n” corresponds to the number of points 

calculated, 𝑀𝑎𝑛𝑎𝑙𝑖𝑡 represents the highest analytical value found and |𝑎𝑛𝑎𝑙𝑖𝑡 − 𝑛𝑢𝑚|𝑖 defines the 

difference in module between each analytical [16] and numerical value evaluated. The interpolation 

used for this method will be done using linear polynomials. 

. 
 

𝑝𝑒% =
100

𝑛|𝑀𝑎𝑛𝑎𝑙𝑖𝑡|
∑|𝑎𝑛𝑎𝑙𝑖𝑡 − 𝑛𝑢𝑚|𝑖

𝑛

𝑖=1
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6.1.  Simulation 

 

In this problem, the points analyzed for the potential values are located internally and all the boundary 

with 𝑥2 = 𝑤, whereas for the potential derivative, the analyzed points will be on the boundary where 

𝑥2 < 𝑤. The analytical solution 𝑢(𝑥1,𝑥2) for this problem is expressed as follows: 

 

𝑢(𝑥1,𝑥2) = ∑
4𝐿

(𝑛𝜋)2
√
𝑘̅22

𝑘̅11
𝑠𝑒𝑛 (

𝑛𝜋𝑥1
𝐿
) [𝑠𝑒𝑛ℎ (

𝑛𝜋𝑥2
𝐿

√
𝑘̅11

𝑘̅22
) 𝑐𝑜𝑠ℎ (

𝑛𝜋𝑊

𝐿
√
𝑘̅11

𝑘̅22
)⁄ ]

∞

𝑛=1
(í𝑚𝑝𝑎𝑟)

 

 

 

(14) 

 

Partial derivatives with respect to 𝑥1 and 𝑥2 are respectively: 

 
𝜕𝑢(𝑥1,𝑥2)

𝜕𝑥1
= ∑

4

𝑛𝜋
√
𝑘̅22

𝑘̅11
𝑐𝑜𝑠 (

𝑛𝜋𝑥1

𝐿
) [𝑠𝑒𝑛ℎ (

𝑛𝜋𝑥2

𝐿
√
𝑘̅11

𝑘̅22
) 𝑐𝑜𝑠ℎ (

𝑛𝜋𝑊

𝐿
√
𝑘̅11

𝑘̅22
)⁄ ] ;   

𝜕𝑢(𝑥1,𝑥2)

𝜕𝑥2
=∞

𝑛=1
(í𝑚𝑝𝑎𝑟)

∑
4

𝑛𝜋
𝑠𝑒𝑛 (

𝑛𝜋𝑥1

𝐿
) [𝑐𝑜𝑠ℎ (

𝑛𝜋𝑥2

𝐿
√
𝑘̅11

𝑘̅22
) 𝑐𝑜𝑠ℎ (

𝑛𝜋𝑊

𝐿
√
𝑘̅11

𝑘̅22
)⁄ ]∞

𝑛=1
(í𝑚𝑝𝑎𝑟)

. 

 

 

 

(15) 

In this example, dimensions w and l are taken unitary. Therefore, the potential distribution obtained 

through Eq. (14) over the domain of Fig. (04) is shown in Fig. (5): 

The numerical simulation applied to the proposed model showed good results and this can be seen 

in Fig. (6) and Fig. (7). The potential values were evaluated in Fig. (6) considering 𝑘̅1 = 2 and 𝑘̅2 = 0,5. 

The error of 0.6577% for the mesh with less refinement in Fig. (6a), being even better when the values 

between  𝑘̅11 and  𝑘̅22 are exchanged (see Fig. (6b)) resulting in an error of approximately 0.0600%. 

Figure 4: Square geometry region and its boundary conditions for the example. 



 

The influence of the effects of orthotropy on the numerical results is 

highlighted, and this influence persists in the calculation of the derivatives 

(Fig. (7a) and Fig. (7b)) even if the alteration in the results is smaller when compared to the potential 

values. The calculated values for the derivative and flux were also considered satisfactory for the 

problem. 

 

 

 

 

 

Figure 5:Analytical and numerical solution of the Fourier series with n = 226 in isotropic medium, where 

𝑘̅11 = 2.0 𝑎𝑛𝑑 𝑘̅22 = 0.5 . 

Figure 7: Percent relative error for the flux/derivative potential where in (a) 𝑘̅11 = 2 and 𝑘̅22 = 0.5 and in 

(b)  𝑘̅11 = 0.5. and 𝑘̅22 = 2. 

Figure 6: Percent relative error for the potential where in (a) 𝑘̅11 = 2 and 𝑘̅22 = 0.5 and in (b)  𝑘̅11 =
0.5. and 𝑘̅22 = 2. 

 



 

7.  Conclusions 

 The transformation of the orthotropic model to a correlated isotropic model 

allows the application of the BEM model in its standard formulation, which is simpler and produces 

more accurate results. Simulations confirm the satisfactory results achieved for the example discussed, 

despite a large number of boundary elements being necessary to reach relative errors smaller that 1%. 

Isotropic problems which are also given by the Laplace equation are solved with a reduced number of 

boundary elements with higher degree of accuracy. 

To get an idea of the numerical difficulties, the Finite Element Method [17] also was applied for 

comparison, using a structured mesh, comprising 4096 triangular elements and 2113 nodal points, of 

which 128 points will be on the boundary. The MEF results for potential errors were 0.0859% for 𝑘̅11 =
2 and 𝑘̅22 = 0.5 and 0.2283% for 𝑘̅11 = 0.5 and 𝑘̅22 = 2. The BEM performance was better from 320 

boundary elements, as shown in Fig. (6a) and Fig. (6b).  

Considering new advances for the subject addressed in this work, it is intended to expand the research 

approaching heterogeneous orthotropic media. 

 

References 

[1] Caddell R M 1980 Deformation and Fracture in Solids Prencitce Hall. 

[2] Brebbia C A and Chang O V 1979 Boundary elements applied to seepage problems in zoned 

anisotropic soils Advances in Engineering Software.1 (3) 95-105. 

[3] Zhang N, Khan T, Guo H, Shi S, Zhong W.  Zhang W. 2019 Functionally Graded Materials: An 

Overview of Stability, Buckling, and Free Vibration Analysis Advances in Materials Science and 

Engineering. 1-19. 

[4] Qiang X, Zhuojia F, Timon R, Deshun Y A 2021 Localized collocation scheme with fundamental 

solutions for long-time anomalous heat conduction analysis in functionally graded materials 

International Journal of Heat and Mass Transfer. 180 1-10. 

[5] Buhmann M D 2003 Radial Basis Function: Theory and Implementations Cambridge University 

Press, Cambridge. 

[6] Partridge P W, Brebbia C A and Wrobel  L C 1992 The Dual Reciprocity Boundary Element 

Method Computational Mechanics Publications and Elsevier London. 

[7] Perez M M and Wrobel L C 1992 A general integral equation formulatin for homogeneous 

orthotropic potential problems Engineering Analysis with Boundary Elements, 10 (4) 323-332. 

[8] Chang Y P, Kang C S and Chen D J 1973 The use of fundamental green's functions for the solution 

of problems of heat conduction in anisotropic media International Journal of Heat and Mass 

Transfer 16 (10) 1905-1918. 

[9] Zhou H L, Tian Y, Yu B and Niu Z R 2015 The natural boundary integral equation of the 

orthotropic potential problem Engineering Analysis with Boundary Elements 62 186-192. 

[10] Kythe P K, 1995 An Introduction to Boundary Element Methods CRC Press  BocaRaton. 

[11] Hon Y C, Wei T. 2005 The method of fundamental solution for solving multidimensional inverse, 

heat conduction problems Computer Modeling in Engineering & Sciences. 7 (2) 119–132. 

[12] Wang H, Qin Q H and Kang Y L 2005 A new meshless method for steady-state heat conduction 

problems in anisotropic and inhomogeneous media Archive of Applied Mechanics 74 (8) 563-

579. 

[13] Anflor C T M, Marczak R. 2006 Topology optimization of heat transfer problems in orthotropic 

materials using boundary elements XXVII Iberian Latin American Congress on Computational 

Methods in Engineering, Belém. 

[14] Caputo H P 1986 Mecânica dos solos e suas aplicações, Editora LTC, 6ª Edição, Rio de Janeiro. 

[15] Callister W D 2007 Materials Science and Engineering: An Introduction, John Wiley & Sons 

LtdPress, 7th edition, New Jersey. 

[16] Boyce W E and DiPrima R C 2010 Equações Diferenciais Elementares e Problemas de Valores 

de Contorno. Editora LTC, 9ª Edição, Rio de Janeiro. 

[17] Rincon M A and Liu S I 2011 Introdução ao MEF, UFRJ, 3ª edição, Rio de janeiro. 

https://www.hindawi.com/journals/amse/
https://www.hindawi.com/journals/amse/

