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Abstract. Monte Carlo simulations are widely used in various scientific and engineering 

domains to estimate uncertainties and make informed decisions. However, running these 

simulations efficiently on web browsers poses significant challenges due to the inherent 

limitations of JavaScript, the predominant language for web development. In this paper, we 

present a novel approach that leverages WebAssembly, compiled from the Rust programming 

language, to enhance the performance of uncertainty calculations in Monte Carlo simulations 

directly within web browsers. Our approach is implemented in a web application called 

"Uncertainty.app," which provides users with a seamless and interactive interface to perform 

uncertainty calculations. 
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1.  Introduction 

 

Monte Carlo simulations have proven to be invaluable in diverse domains such as physics, finance, 

and engineering, enabling researchers and practitioners to analyze uncertainties and make informed 

decisions. However, executing these simulations efficiently in web browsers presents unique 

challenges due to the limitations of JavaScript, the predominant language for web development. 

JavaScript's dynamic nature and lack of low-level optimizations can significantly hinder the 

performance of computationally intensive tasks, limiting the scope and complexity of simulations that 

can be performed on the web. 

 

To address these challenges, we propose a novel approach that utilizes WebAssembly[1], a binary 

instruction format for web browsers, to optimize the computation of uncertainties in Monte Carlo 

simulations. WebAssembly allows developers to compile code from various programming languages 

into a low-level format that can be executed directly within web browsers. In this work, we leverage 

the Rust programming language[2], known for its focus on performance and memory safety, to 

develop highly efficient uncertainty calculation routines. 

 

To showcase the practicality and effectiveness of our approach, we have developed 

"Uncertainty.app," (https://uncertainty.app) a web application that enables users to perform uncertainty 

calculations using Monte Carlo simulations directly in their web browsers. Leveraging WebAssembly 



 
compiled from Rust, Uncertainty.app achieves significant performance improvements compared to 

traditional JavaScript-based implementations. By offloading the computational burden to the client-

side, users can benefit from interactive and responsive simulations without requiring server-side 

processing or additional infrastructure. 

 

2.  Methods 

Our project focuses on optimizing four essential steps of uncertainty calculation in Monte Carlo 

simulations: evaluation, sampling, sensitivity analysis, and histogram building. 

2.1.  Evaluation 

 

The Evaluation step begins by receiving the mathematical model expression, which represents the 

system being analyzed under uncertainty. This expression may consist of mathematical functions, 

operations, and variables that interact with each other. To ensure flexibility and generality, the 

expression can incorporate commonly used mathematical functions and operations. 

 

By transforming the mathematical model expression into a fast and specific domain programming 

language, the Evaluation step significantly enhances the performance of uncertainty calculations in 

Monte Carlo simulations within web browsers. The use of a specialized compiler ensures optimized 

execution and seamless integration with the subsequent steps of the simulation process. 

 

Additionally, the compiled code is designed to seamlessly interact with the remaining steps of the 

Monte Carlo simulation process. It can efficiently receive the samples generated from probability 

distributions defined for each quantity represented by variables. These samples are essential for 

evaluating the uncertainty and obtaining meaningful simulation results. The compiled code utilizes the 

samples to perform the necessary calculations specified by the mathematical model expression. 

2.2.  Sampling 

 

In the proposed project, the Sampling step plays a critical role in generating random samples from 

probability distributions for each variable involved in the uncertainty calculation. The step aims to 

provide efficient and accurate sampling algorithms for a range of available distributions, including 

Uniform, Normal, Student's t, Triangular, Arcsine, Trapezoidal, and Curvilinear Trapezoidal. The 

sampling algorithms implemented in this project are based on the document "Evaluation of 

measurement data Supplement 1 to the 'Guide to the expression of uncertainty in measurement' - 

Propagation of distributions using a Monte Carlo method,"[3] which ensures reliable and validated 

sampling methodologies. 

 

To enable uncertainty analysis, it is necessary to define probability distributions for each variable 

in the mathematical model. The Sampling step accepts user-defined parameters for these distributions, 

allowing customization and flexibility in modeling the uncertainties. The implemented algorithms take 

into account the parameters defined by the user, such as mean, standard deviation, shape parameters, 

and range constraints, to generate random samples that reflect the characteristics of the specified 

distributions.  

2.3.  Sensitivity Analysis 

 

To calculate sensitivity coefficients, the Sensitivity Analysis step employs a method that involves 

holding all input quantities but one fixed at their best estimates. The best estimate represents the most 

likely or most accurate value for each input quantity. By systematically varying a single input quantity 



 
while keeping the others constant, the step estimates the probability density function (PDF) for the 

output quantity, considering the model with that specific input quantity as a variable. 

 

The ratio of the standard deviation of the resulting model values to the standard uncertainty 

associated with the best estimate of the relevant input quantity is used as a sensitivity coefficient. This 

coefficient reflects the change in the output uncertainty corresponding to a unit change in the input 

uncertainty. It provides a quantitative measure of the impact of a particular input quantity on the 

overall uncertainty of the model. 

 

The methodology for determining sensitivity coefficients and their interpretation aligns with 

established guidelines, such as Annex B of the JCGM 101:2008 reference.  

 

2.4.  Histogram Building and Reporting 

 

Histogram Building and Reporting step focuses on presenting the output estimations of the Monte 

Carlo simulations through a histogram. To build the histogram, a fixed number of output samples (M) 

is generated from the Monte Carlo simulations. In this project, we set M to 1e6. To enhance 

performance and maintain a responsive user interface, the generation of these samples is performed 

using Web Workers. 

 

Web Workers are like virtual assistants for your computer's web browser. Imagine you're doing a 

big task that takes a lot of time, like counting a million nuts. Instead of doing it all by yourself, you 

can hire several assistants to help you count. These assistants work together at the same time, so the 

job gets done much faster. Web Workers are like those assistants for the computer. They help the 

computer split up the work into smaller parts and do them all at once. 

 

Once the output samples are generated, they are merged from multiple Web Workers into a single 

dataset. By combining and ordering the samples, we create a comprehensive dataset that represents the 

full range of output values from the Monte Carlo simulations. 

 

Subsequently, the dataset is used to construct a histogram with 50 bins. The histogram provides a 

visual representation of the distribution of the output estimations, allowing users to observe the shape, 

central tendency, and spread of the output quantities. The number of bins is chosen to balance between 

capturing the finer details of the distribution and presenting a clear overview, as shown on figure 1. 

 

 
Fig 1 – Histogram output from Uncertainty.app reproducing the Additive 

model with multiple sizes, described on GUM sup. 1 item 9.2. 

 



 
In addition to the histogram, two key statistical measures are computed to aid in the interpretation 

of the output estimations. The shortest confidence interval is determined to provide an estimate of the 

range within which the true value of the output quantity is likely to fall in respect of user defined 

coverage interval.  

 

To provide a relative measure of the range covered by the shortest confidence interval, the 

coverage factor (k) is determined. The coverage factor is calculated as the ratio of the shortest 

confidence interval to the standard deviation.  

 

3.  Comparision with NIST Uncertainty Machine 

 

It is important to acknowledge and appreciate the efforts of organizations like NIST (National Institute of 

Standards and Technology) in providing valuable tools such as the "uncertainty machine." The 

"uncertainty machine"[4] is a client-server approach for uncertainty analysis, which has been widely 

used and recognized for its contributions to the field. When comparing our approach, it is essential to 

recognize the strengths and characteristics of both approaches. 

 

The NIST uncertainty machine has established itself as a robust and widely used tool. Over time, it 

has undergone extensive development and refinement, making it a reliable and battle-tested solution. The 

NIST uncertainty machine's longevity and continued usage demonstrate its ability to handle a wide range 

of scenarios and provide accurate and trustworthy results. 

 

In contrast, our novel solution leveraging WebAssembly is a relatively new approach. While it offers 

notable advantages in terms of performance and responsiveness, it may not yet possess the same level of 

robustness and battle testing as the NIST uncertainty machine. As a newer solution, it may still be 

undergoing refinement and validation, and its user base and track record may not be as extensive as that 

of the NIST uncertainty machine. 

 

However, our solution takes the advantage of modern web technologies to deliver high-performance 

uncertainty analysis directly in web browsers. It offers a streamlined and accessible approach, 

eliminating the need for a client-server infrastructure and providing a responsive user experience. 

 

In summary, while the NIST uncertainty machine boasts robustness, feature completeness, and 

extensive testing, our novel solution leveraging WebAssembly and Rust offers unique advantages in 

terms of performance and user experience. 

4.  Results 

 

To validate the accuracy and effectiveness of our software, we conducted comparisons with two 

examples from the ISO GUM Supplement 1: Comparison on loss in microwave power meter calibration 

for zero covariance (figure 2) and Gauge block calibration (figure 3). These examples were chosen to 

demonstrate the importance of using the Monte Carlo method in achieving accurate results, particularly 

for a non-linear model. 
 

On figure 2, the “Comparison loss in microwave power meter calibration” example from GUM sup. 1 

item 9.4.2.2.7 processed on Uncertainty.app, resulted in [0, 366] δY /10−6 for 95 % Shortest coverage 

interval, versus [0, 367] δY /10−6 from GUM sup. 1. 

 

On figure 3, the “Gauge block calibration“ example from GUM sup. 1 item 9.5 processed on 

Uncertainty.app, resulted in [745, 931] δY /10−6 for 99 % Shortest coverage interval, versus [745, 932] 

δY /10−6 reported on GUM sup. 1. 



 
By modeling these examples in our software, we were 

able to obtain equivalent results to those described in the ISO 

GUM Supplement 1. This validation indicates that our 

software is capable of reproducing the expected outcomes for 

complex models. The permanent links for execution of 

examples are avaliable at 

https://uncertainty.app/#/ex_Comparison_loss_in_microwave 

and https://uncertainty.app/#/ex_Gauge_block_calibration. 

 

  
Figure 2 – Comparison loss in microwave power meter calibration 

example. 

 

 

Figure 3 – Gauge block calibration example. 

 



 
5.  Benchmark 

 

For the purpose of evaluating computation time and performance gains using Web Workers, Table 1 

provides a summary of the total computation time, comparing scenarios with and without the 

utilization of Web Workers for parallelizing the generation of random samples from a uniform 

distribution: 

 

Table 1. Comparison of computation times for generating multiple 

random samples from a uniform distribution, with and without the use of 

Web Workers. 

 Number of 

samples N=1e5 

Number of 

samples N=1e6 

Number of 

samples N=1e7 

Without Web Workers 144 ms 1.364 ms 13.396 ms 

Using Web Workers 46 ms 82 ms 327 ms 

 

Table 2 presents a comparison of computation times for the additive model similar to example 

found in GUM sup. 1, item 9.2. This comparison is made between two implementations: one powered 

by WebAssembly, as demonstrated in this paper using Uncertainty.app, and another using pure 

JavaScript. Both implementations utilize Web Workers for parallelized computation. The comparison 

includes scenarios involving uniform distributions and varying number of quantities. 

 

Table 2. Comparison of computation times using WebAssembly 

implementation and pure JavaScript implementation. 

 Number of 

quantities N=3 

Number of 

quantities N=4 

Number of 

quantities N=5 

WebAssembly 1.002 ms 1.553 ms 1.762 ms 

JavaScript 3.758 ms 5.627 ms 7.272 ms 

 

 

These tests were conducted on a Windows 10 Pro system with an AMD Ryzen 3 4300U 

processor, 8 GB of RAM, utilizing 4 threads, and using the Google Chrome web browser. The 

methodology employed is based on the available JavaScript library [5]. 

 

6.  Conclusion 

 

In this project, we have successfully leveraged WebAssembly compiled from the Rust programming 

language to enhance the performance of uncertainty calculations in Monte Carlo simulations on web 

browsers. By optimizing the evaluation, sampling, sensitivity analysis, and histogram building steps, 

we have achieved significant improvements in speed, scalability, and user experience. 

 

Through the use of a specialized compiler, we transformed mathematical model expressions into a 

fast and specific domain programming language, enabling efficient calculations. The implementation 

of robust sampling algorithms for various probability distributions ensured accurate and reliable 

generation of random samples. The parallel execution of web workers improved performance and 

responsiveness. 

 

Overall, our project demonstrates the power of WebAssembly, Rust, and parallelization techniques 

in enabling efficient uncertainty analysis within web browsers. This advancement opens up new 

possibilities for researchers, engineers, and decision-makers to perform complex simulations, assess 

uncertainties, and make informed decisions in a user-friendly and efficient manner. 



 
 

For future improvement of our software is planned the incorporation of features that enable the 

creation and utilization of standards for data reuse. By providing a framework to define and implement 

standardized data formats, our software can facilitate seamless integration and sharing of data across 

different uncertainty analysis projects. This will not only enhance collaboration and reproducibility but 

also promote the reuse of valuable datasets, saving time and effort in future analyses. 

 

Additionally, we aim to enhance the flexibility of our software by improving the existing support 

for custom piecewise distributions. While our current implementation covers a range of commonly 

used probability distributions, enabling users to define their own piecewise distributions would 

empower them to model specific scenarios more accurately. This customization capability would cater 

to a broader range of applications. 

 

 

References 

 

[1] Rust and WebAssembly. Retrieved from [https://www.rust-lang.org/pt-BR/what/wasm] 

(Accessed on 26 jun. 2023). 

 

[2] Klabnik, S., Nichols, C., & Rust Community. The Rust Programming Language. Retrieved from 

[https://doc.rust-lang.org/stable/book/] (Accessed on 26 jun. 2023). 

 

[3] Evaluation of measurement data — Supplement 1 to the “Guide to the expression of uncertainty 

in measurement” — Propagation of distributions using a Monte Carlo method. Retrieved from 

[https://www.bipm.org/documents/20126/2071204/JCGM_101_2008_E.pdf] (Accessed on 26 

jun. 2023). 

 

[4] NIST Uncertainty Machine. Retrieved from [https://uncertainty.nist.gov/] (Accessed on 26 jun. 

2023). 

 

[5] Web Workers Pool JavaScript library. Retrieved from [https://github.com/arturaugusto/web-

workers-pool] (Accessed on 15 sep. 2023). 


